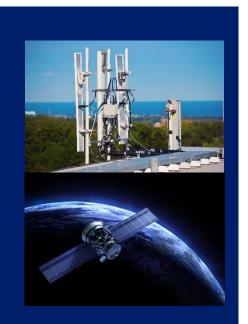
fastRise[™] TC

AGC Your Dreams, Our Challenge


卫星通信多层板叠构用半固化片

优点

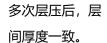
- Df=0.0023@10 GHz
- 通过200次回流@35-260℃
- 与铜箔紧密匹配的低膨胀系数 ~22ppm/°C
- 低模量,防止焊盘开裂
- 高导热率 0.94 W/M*K
- 高流胶,适合多次压合及适合厚铜设计

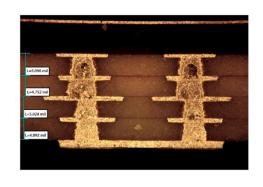
应用

- 半导体引脚布线 (HDI)
- 功率放大器
- 航空航天应用
- 太空空间应用

fastRise™ TC是一种不含玻璃布增强的纯树脂的产品,具有极低的X、Y、Z热膨胀系数。fastRise™ TC是一种更高的DK,阻燃树脂层,在温度30°C到260°C范围的热膨胀系数16~22 ppm 18/°C,更接近铜箔或铝箔的热膨胀系数,为此减少了随温度变化而引起的内应力,fastRise™ TC的设计目的是满足以下需求:

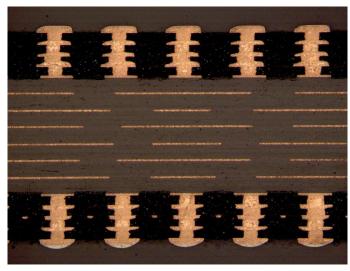
- 1. 高密度互连 (HDI)
- 2. 对热可靠性有严格要求的应用,如宇宙空间和航空航天
- 3. 对高导热率有需求的应用


fastRise™ TC具有极低的传输损耗,适用于高频微波的应用场景。 为了实现高热稳定性,以下特性很重要:

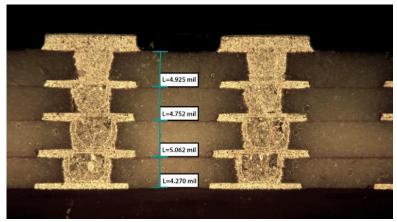

- 1. 低热膨胀系数
- 2. 高Tg (225°C),以最大限度地减少Tg以上的加速膨胀
- 3. 低模量

普通材料可以有很低的CTE值,但在极小的内应力下,非常脆,容易开裂。 理想的材料具有低模量、适用性、延伸量有限 且不开裂。 *fast*Rise TC是为低CTE、高Tg和尽可能低的模量而设计的,仍然保留了其他关键特性。

可用于多层堆叠微孔设计 (左图是4层堆叠微孔结构设计的截面图)



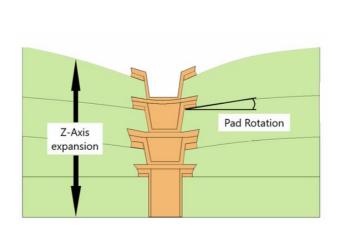
高密度互联 (HDI) 对材料带来了挑战。 fastRise™ TC具有以下特性来解决这些挑战:

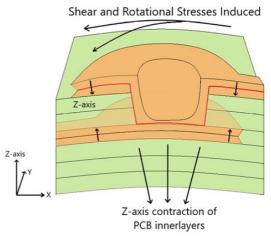

- 1. 高树脂流动性,满足封装电路设计中的树脂填充的需求。
- 2. 理想情况下,使用单张材料可满足树脂流动的要求。
- 3. 足够的铜结合力,适合各种PCB制造加工工艺。
- 4. 良好的镭射加工窗口。
- 5. 热性能稳定,可多次压合。

fastRise™ TC 可用于多种厚度叠构设计,层压后具有层间厚度的高度一致性。 为确保首层铜箔压合时 fastRise TC 材料的介电层厚度均匀性,子板需尽可能保持平整。fastRiseTC 的厚度在 1.2 到 2.5mil 之间,激钻孔具有宽泛的加工窗口,可兼容底层子板介电厚度的较大波动。 对于堆叠式微孔(stacked vias)的热可靠性验证,行业中存在争议:传统认为通过 6 次回流焊(6x reflow)即可验证其稳定性,但 fastRise™ TC 在以下严苛条件下仍表现优异:

- 热循环测试:通过 35°C 至 260°C 区间 200 次循环测试;
- 堆叠结构: 支持 4 层堆叠微孔结构, 无分层或失效问题。

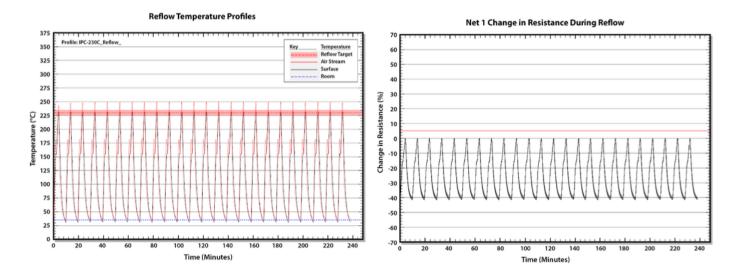
fastRise™ TC D 型测试片(从上至下结构)


这两张图表分别展示了在观察子板的顶部和底部时,各层之间的介电层厚度。



属性	条件	典型价值	单位	测试方法	
电气特性					
可用厚度		1.2/2.5	Mil		
介电常数	@10 GHz	4.8		IPC-6502.5.5.5.1 (修改)	
耗散因子	@10 GHz	0.0023		IPC-6502.5.5.5.1 (修改)	
体积电阻率	高湿后	7.4 x ¹⁰⁸	Mohm/cm	IPC6502.5.17.1E	
表面电阻率	高湿后	1.8 x ¹⁰⁸	欧姆	IPC6502.5.17.1E	
热力学性质					
热导率		0.94	W/M*K	IPC-TM6502.4.50	
	Х	22	ppm/°C		
CTE (RT~260°C)	Υ	22	ppm/°C	IPC-6502.4.41/TMA	
	Z	22	ppm/°C		
T _d	2% wt. loss	357 (675)	°C (°F)	IPC6502.4.24.6/TGA	
1 d	5% wt. loss	402 (756)	°C (°F)	1r C0302.4.24.0/ 1GA	
Tg		225 (437)	°C (°F)	IPC-6502.4.41/TMA	
机械性能					
抗剥强度	After solder float	0.61 (3.5)	N/mm (lbs/in)	IPCC TM 6502.4.9E	
介电强度		31.8 (808)	Kv/mm (V/mil)	ASTM D 149	
 	MD	11 (1,595)	N/mm² (psi)	IDCC TM CEO2 4 40 2	
拉伸强度	CD	11 (1,595)	N/mm² (psi)	- IPCC TM 6502.4.18.3	
	MD	738 (107)	N/mm² (kpsi)	IPCC TM 6502.4.18.3	
1700代表数	CD	814 (118)	N/mm² (kpsi)	IPCC 11VI 0302.4.18.3	
断裂伸长率	MD	9.7	%	 	
UIAITAT	CD	12	%	65 1 5502.4.10.5	
化学/物理特性					
吸湿性		0.07	%	IPCTM650-2.6.2.1	
介质破坏	@20 MIL	18.3	KV	ASTM D 149	
密度	比重力	2.22	g/cm³	IPCC TM TM-650 2.3.5	

^{*} 提供的所有测试数据都是典型值,而不是规格值。 如需审查关键规格公差,请直接与公司代表联系。


代表型号: FR-TC-31-18 "x 24" (457 mm x 610 mm)

分离发生在冷却开 始时~19**0°**C

24 个 D 型测试片成功通过了 24 次 35°C 至 260°C 的热循环测试。随后,将这些测试片分为三组进行焊锡漂浮(Solder Float)测试:8 个测试片在 270°C 下进行焊锡漂浮;8 个测试片在 280°C 下进行焊锡漂浮;8 个测试片在 280°C 下进行焊锡漂浮;8 个测试片在 280°C 下进行焊锡漂浮。完成上述测试后,这 24 个 D 型测试片被送往外部实验室,再次进行 24 次热循环测试(35°C 至 260°C)。最终,所有 24 个测试片均通过了总计 48 次热循环(35°C 至 260°C),且全部经受住了 270°C 至 288°C 的焊锡漂浮考验。

Reflow Statistics

Coupon Number	Nominal Resistance at Room Temperature (ohms)		Reference Resistance at 230C (ohms)		Cycles to 5% Change		Change after 24 Cycles (%)	
Number	Net 1 - Lot #1	Net 1 - Lot #2	Net 1 - Lot #1	Net 1 - Lot #2	Net 1 - Lot #1	Net 1 - Lot #2	Net 1 - Lot #1	Net 1 - Lot #2
1	0.981	0.943	1.621	1.581	>24	>24	-0.1	-0.4
2	0.952	0.987	1.599	1.693	>24	>24	0.0	-0.3
3	0.916	0.983	1.554	1.671	>24	>24	-0.0	0.2
4	0.893	0.972	1.509	1.655	>24	>24	-0.1	0.0
5	0.908	0.978	1.538	1.671	>24	>24	0.2	0.1
6	0.910	0.959	1.530	1.615	>24	>24	0.1	-0.0
7	0.899	0.936	1.511	1.561	>24	>24	0.1	-0.1
8	0.911	0.995	1.560	1.685	>24	>24	-0.1	-0.2
9	0.942	0.940	1.601	1.601	>24	>24	-0.1	-0.2
10	0.913	0.961	1.571	1.635	>24	>24	-0.1	-0.2
11	0.911	0.927	1.587	1.569	>24	>24	-0.1	-0.1
12	0.891	0.949	1.542	1.593	>24	>24	-0.2	-0.2
13	0.895	0.920	1.538	1.565	>24	>24	-0.2	-0.2
14	0.911	0.936	1.581	1.614	>24	>24	-0.3	-0.2
15	0.883	0.965	1.518	1.661	>24	>24	0.0	-0.2
16	0.910	0.918	1.567	1.588	>24	>24	-0.1	-0.4
17	0.887	0.903	1.532	1.564	>24	>24	-0.0	-0.2
18	0.904	0.909	1.551	1.554	>24	>24	-0.1	-0.4
19	0.908	0.934	1.545	1.598	>24	>24	-0.1	-0.2
20	0.905	0.922	1.546	1.592	>24	>24	0.1	-0.1
21	0.899	0.925	1.531	1.598	>24	>24	-0.1	-0.1
22	0.901	0.888	1.523	1.528	>24	>24	-0.0	-0.1
23	0.899	0.939	1.523	1.617	>24	>24	0.1	-0.1
24	0.896	0.975	1.487	1.687	>24	>24	0.1	0.1

